The updated list of my publications is available through:
And my main tools are available : https://github.com/asfistonlavie
My research focus on the study of the population dynamics and evolution of the transposable elements (TEs), one type of repeats, mainly in insect genomes. I am also particularly interested in the impact of such repetitive elements on genome adaptation. Another interest of my research is to assess the veracity of short and long read sequencing technologies and develop tools for the annotation and analyze of these repeats.
Detection of DNA repeats in assembled and non-assembled data
Transposable elements (TEs). TEs are ubiquitous repetitive elements of genomes representing a large part of genomes. As more and more studies highlight the implication of these elements in the evolution and adaptation of genomes, the annotation of TEs is still a huge challenge. In my research, I developed computational approaches and tools for the detection and annotation of TE insertions in genome sequencing from individuals and pooled data. The accuracy of the detection depends on biologic and technic variables. My current interest is to (1) optimize existing TE detection approaches and (2) assess the impact of repeats on the quality of genome assemblies.
TE dynamics
As TEs may represent a large fraction of genomes, a clear and thorough understanding of how TEs evolve is essential for a full comprehension of genome evolution. In previous work, we showed that most of TE insertions are deleterious and subject to purifying selection. This selection varies predictably with recombination rate, length of individual TEs, and copy number and length of other TEs from the same family. However, the effect of each factor is not the same for all TE families. To account for the specific biology of each TE family, I am currently investigating their dynamics, focusing on insertion biases and repression mechanisms in several organisms.
Impact of TEs on genome structure and evolution
Another key aspect of my work involves assessing the impact of transposable elements (TEs) on genome structure and evolution. I am particularly interested in understanding how TEs influence genome size evolution and adaptive processes.
preprinted/submitted
- Manual versus automatic annotation of transposable elements: case studies in Drosophila melanogaster and Aedes albopictus, balancing accuracy and biological relevance. Tomas Carrasco-Valenzuela, Alba Marino, Jessica M. Storer, Iago Bonnici, Camila J. Mazzoni, Michael C. Fontaine, Annabelle Haudry, Matthieu Boulesteix, Anna-Sophie Fiston-Lavier. bioRxiv 2025.01.10.632341; doi: https://doi.org/10.1101/2025.01.10.632341 (submitted)
- Human pangenome illuminates the dynamics of polymorphic transposable elements. Shadi Shahatit, Jean Monlong, Kateryna D. Makova, Anna-Sophie Fiston-Lavier. (submitted)
- RF4DEL: A Random Forest approach for accurate deletion detection.
Xavier R, Fiston-Lavier AS, Alves RCO*, Cherif E*. (* co-last author).
bioRxiv 2022.03.10.483419; https://doi.org/10.1101/2022.03.10.483419.
Published
- Why and how to set up a Bioinformatics Learning Lab (BILL) ? Fiston-Lavier AS, Cherif E, Tilak MK, Soulier A, Breton C, Boureux A, Costa R, Miahle X, Chenal C, Camelia, Avarre JC, Gosselin-Grenet AS. Plos Computational Biology. 2025 August. https://doi.org/10.1371/journal.pcbi.1013236
- Fischer NM, Dumville I, Nabholz B, Zhelyazkova V, Stecker RM, Blomberg AS, Dool SE, Fritze M, Tilak MK, Bashta AT, Chenal C, Fiston-Lavier AS, Puechmaille SJ. Two distinct host-specialized fungal species cause white-nose disease in bats. Nature. 2025 May 28;. doi: 10.1038/s41586-025-09060-5. [Epub ahead of print] PubMed PMID: 40437097.
- Marino, A., Mayoud, C. and Fiston-Lavier, A.-S. (2025) A new Galaxy workflow to generate and evaluate reference genome assemblies. Peer Community in Genomics (2025), 100445. https://doi.org/10.24072/pci.genomics.100445
- Effective population size does not explain long-term variation in genome size and transposable element content in animals. Marino A, Debaecker G, Fiston-Lavier AS, Haudry A, Nabholz B. (2024) eLife13:RP100574; https://doi.org/10.7554/eLife.100574.1
- Fiston-Lavier, AS. PCI recommender. The number of Y chromosomes is positively associated with transposable element expression in humans, in line with the toxic Y hypothesis. Peer Community in Genomics, (2024)100293. 10.24072/pci.genomics.100293
- ISMB/ECCB 2023 organization benefited from the strengths of the French bioinformatics community. Fiston-Lavier AS, Dérozier S, Perrière G, Sagot MF. Bioinformatics Advances. 2024. https://doi.org/10.1093/bioadv/vbae040
- TrEMOLO : Accurate transposable element allele frequency estimation using long-read sequencing data combining assembly and mapping-based approaches.
Mohamed M*, Sabot F*, Varoqui M, Mugat B, Audouin K, , Pélisson A, Fiston-Lavier AS°, Chambeyron S°. (* co-first author; ° co-last author). Genome Biology 24, 63 (2023). https://doi.org/10.1186/s13059-023-02911-2. - Structural variation turnovers and defective genomes: key drivers for the in vitro evolution of the large double-stranded DNA koi herpesvirus (KHV).
Nurul Novelia Fuandila, Anne-Sophie Gosselin-Grenet, Marie-Ka Tilak, Sven M Bergmann, Jean-Michel Escoubas, Sandro Klafack, Angela Mariana Lusiastuti, Munti Yuhana, Anna-Sophie Fiston-Lavier, Jean-Christophe Avarre, Emira Cherif.
10.24072/pcjournal.154 – Peer Community Journal, Volume 2 (2022), article no. e44. - Finding and Characterizing Repeats in Plant Genomes.
Nicolas J., Tempel S., Fiston-Lavier AS., Cherif E. In: Edwards D. (eds) Plant Bioinformatics. Methods in Molecular Biology, vol 2443. Humana, New York, NY. 2022.
https://doi.org/10.1007/978-1-0716-2067-0_18 - Involving Repetitive Regions in Scaffolding Improvement.
Delorme Q, Costa R, Mansour Y, Fiston-Lavier AS, Chateau A. Journal of Bioinformatics and Computational Biology. Volume No., Issue No., Article No. 2140016, 2021.
https://doi.org/10.1142/S0219720021400163 - Ten simple rules for switching from face-to-face to remote conference: an opportunity to estimate the reduction in GHG emissions.
Guignon V, Breton C, Mariette J, Sabot F, Jumey J, Lefort V*, Fiston-Lavier AS* (*co-last author) PLoS Computational Biology. 2021.
https://doi.org/10.1371/journal.pcbi.1009321 - PlasForest : a homology-based random forest classifier for plasmid detection in genomic datasets.
Pradier L, Tissot T, Fiston-Lavier AS, Bedhomme S. BMC Bioinformatics 22, 349. 2021.
https://doi.org/10.1186/s12859-021-04270-w - BREC: An R package/Shiny app for automatically identifying heterochromatin boundaries and estimating local recombination rates along chromosomes.
Mansour Y, Chateau A, Fiston-Lavier AS. 2021. BMC Bioinformatics 22, 396 (2021).
https://doi.org/10.1186/s12859-021-04233-1 - Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia.
Zhu X, Zhou B, Pattni R, Gleason K, Tan C, Kalinowski A, Sloan S, Fiston-Lavier AS, Mariani J, Abyzov A, Petrov DA, Barres BA, Duncan L, Abyzov A, Vogel H, Brain Somatic Mosaicism Network, Moran, JV, Vaccarino FM, Tamminga CA, Levinson DF, Urban AE. Nature Neuroscience. 2021.
https://doi.org/10.1038/s41593-020-00767-4 - T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data
Bogaerts-Márquez M, Barrón MG, Fiston-Lavier AS, Vendrell-Mir P, Castanera R, Casacuberta JM, and González J. Bioinformatics, Volume 36, Issue 4, 15 February 2020, Pages 1191–1197.
https://doi.org/10.1093/bioinformatics/btz727. - Cyprinid herpesvirus 3 evolves in vitro through an assemblage of haplotypes that alternatively become dominant or under-represented.
Klafack S, Fiston-Lavier AS, Bergmann S, Hammoumi S, Schroeder L, Fuchs W, Lusiastuti A, Lee P-Y, Heredia SV, Student Consortium*, Gosselin-Grenet AS, Avarre JC. Viruses 2019, 11(8), 754.
https://doi.org/10.3390/v1108075. - Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila.
Rech GE, Bogaerts-Marquez M, Barron MG, Merenciano M, Villanueva-Canas JL, Horvath V, Fiston-Lavier AS, Luyten I, Venkataram S, Quesneville H, Petrov DA, Gonzalez J. PLoS Genetics 2019.
https://doi.org/10.1371/journal.pgen.1007900. - The somatic piRNA pathway controls germline transposition over generations.
Barckmann B, El-Barouk M, Pélisson A, Mugat B, Li B, Franckhauser C, Fiston-Lavier AS, Mirouze M, Fablet M and Chambeyron S, 2018. Nucleic Acids Research gky761. - The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications.
Assogba BS, Milesi P, Djogbénou LS, Berthomieu A, Makoundou P, Baba-Moussa LS, Fiston-Lavier AS, Belkhir K, Labbé P, Weill M. PLoS Biology. 2016 Dec 5;14(12):e2000618. doi: 10.1371/journal.pbio.2000618. eCollection 2016 Dec. - A call for benchmarking transposable element annotation methods.
Hoen DR, Hickey G, Bourque G, Casacuberta J, Cordaux R, Feschotte C, Fiston-Lavier AS, Hua-Van A, Hubley R, Kapusta A, Lerat E, Maumus F, Pollock DD, Quesneville H, Smit A, Wheeler TJ, Bureau TE, Blanchette M. Mob DNA. 2015 Aug 4;6:13. doi: 10.1186/s13100-015-0044-6. eCollection 2015. - Impact Of Transposable Elements On Insect Genomes And Biology.
Fiston Lavier AS*, Maumus F*, Quesneville H. Current Opinion in Insect Science 2015. https://doi.org/10.1016/j.cois.2015.01.001 (* co-first authors). - T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data.
Fiston-Lavier AS, Barrón MG, Petrov DA, González J. Nucleic Acids Research. 2015 Feb 27;43(4):e22. doi: 10.1093/nar/gku1250. Epub 2014 Dec 15. - Population genomics of transposable elements in Drosophila.
Barrón MG, Fiston-Lavier AS, Petrov DA, González J. Annual Review of Genetics. 2014;48:561-81. doi: 10.1146/annurev-genet-120213-092359. Epub 2014 Oct 1. Review. - Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements.
McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D, Petrov DA*, Fiston-Lavier AS*. PLoS One. 2014 Sep 4;9(9):e106689. doi: 10.1371/journal.pone.0106689. eCollection 2014. (co-last authors) - Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.
Kelley JL, Peyton JT, Fiston-Lavier AS, Teets NM, Yee MC, Johnston JS, Bustamante CD, Lee RE, Denlinger DL. Nature Communication. 2014 Aug 12;5:4611. doi: 10.1038/ncomms5611. - Formation of plant metabolic gene clusters within dynamic chromosomal regions.
Field B, Fiston-Lavier AS, Kemen A, Geisler K, Quesneville H, Osbourn AE. Proc Natl Acad Sci (PNAS) U S A. 2011 Sep 20;108(38):16116-21. doi: 10.1073/pnas.1109273108. Epub 2011 Aug 29. - T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data.
Fiston-Lavier AS, Carrigan M, Petrov DA, González J. Nucleic Acids Research. 2011 Mar;39(6):e36. doi: 10.1093/nar/gkq1291. - Population genomics of transposable elements in Drosophila melanogaster.
Petrov DA, Fiston-Lavier AS, Lipatov M, Lenkov K, González J. Molecular Biology and Evolution. 2011 May;28(5):1633-44. doi: 10.1093/molbev/msq337. Epub 2010 Dec 16. - Drosophila melanogaster recombination rate calculator.
Fiston-Lavier AS, Singh ND, Lipatov M, Petrov DA. Gene. 2010 Sep 1;463(1-2):18-20. doi: 10.1016/j.gene.2010.04.015. Epub 2010 May 7. - A model of segmental duplication formation in Drosophila melanogaster.
Fiston-Lavier AS, Anxolabehere D, Quesneville H. Genome Research. 2007 Oct;17(10):1458-70. Epub 2007 Aug 28. - Detection of transposable elements by their compositional bias.
Andrieu O, Fiston AS, Anxolabéhère D, Quesneville H. BMC Bioinformatics. 2004. doi: 10.1186/1471-2105-5-94